

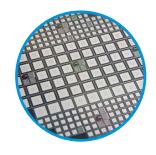
Leader In Detection and Sensing

DSt have established a successful business supplying markets requiring high performance detector and sensor technologies

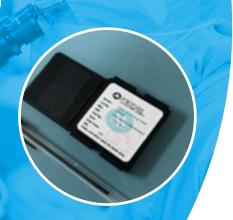
Strengths

- Interactive design optimisation with customers
- Strong technical support
- In-depth process knowledge
- Detailed understanding of X-ray sensor requirements
- Best performance ultra low noise JFETS and PIN diodes.
- Supplies JFETs/PIN Diodes to >50% end markets
- Familiar with MEMS sensor technologies for a broad set of applications

Expert


DSt Sensor Technologies is an expert developer and supplier of semiconductor sensor devices for the X-Ray detector, X-Ray fluorescence, Radiotherapy dosimeter and Radiation detector markets.

- High performance PIN diodes,
- Ultra low noise JFETs (3 pin for high transconductance
- Low noise amplifiers and 4 pin with integrated charge reset mechanism and feedback capacitor for large area nuclear detectors coupled with charge sensitive amplifiers - available for both positive and negative charge collection)
- Neutron detectors



Service and Product form factor

Full custom design and manufacturing service

We can supply in:

- Wafer form, as 100% tested die
- Die in waffle trays
- Devices in packages
- Fully assembled and tested modules

Products and Markets Served

- Further Areas of Activity
 - ✓ Packaged PiN diodes for Neutron radiation monitoring.
 - ✓ Customer specific charged particle detectors.
 - ✓ Medical dosimetry using PiN diode and Radfet devices.
 - ✓ MEMS based thermal conductivity gauge for O2 sensing
 - ✓ Gas Sensing ; Micro hotplates, IR emitters
 - ✓ Thin silicon PiN diodes for advanced medical dosimetry.
 - ✓ MEMS breathing sensor for Sleep Apnea, COPD, Asthma

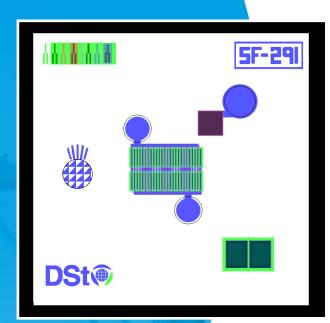
X-Ray & Other Detection Markets

Market Size

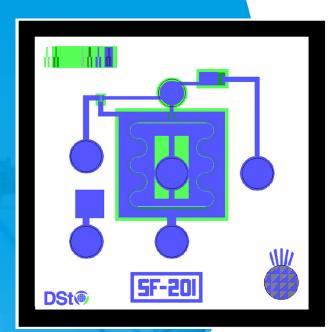
- End user market >\$500M p.a.
- Component Sales c.100,000 p.a.
- Growth Rate >10% p.a.

Market Drivers

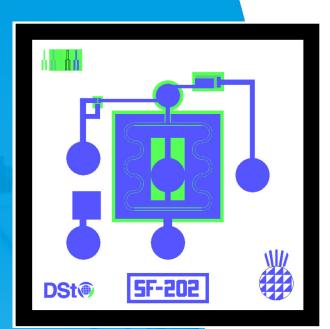
- RoHS Compliance
- Homeland Security
- Handheld Instrumentation
- In home medical diagnostic devices


Design and Modelling Capability

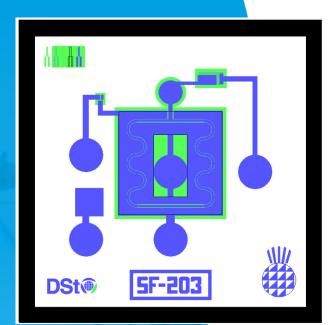
- In house design and layout using LEDIT software
- Device modelling using Silvaco
- Characterisation using in house SEM and EDAX
- Detailed reverse engineering analysis at MCS for FIB, device cross sections and elemental analysis



SF291 JFET Layout

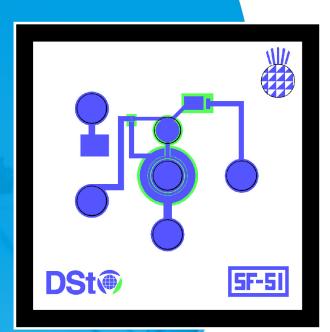


SF201 JFET Layout

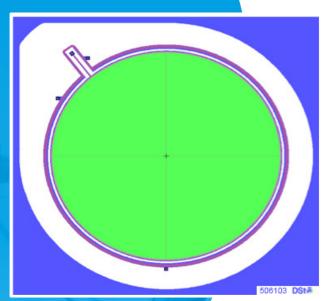


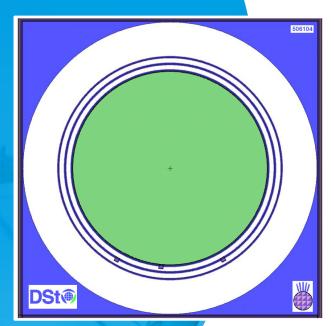
SF202 JFET Layout

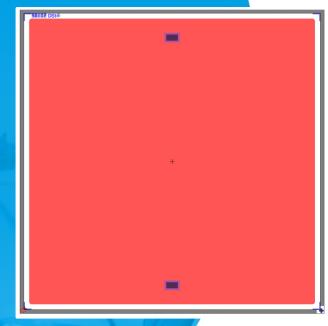
SF203 JFET Layout



SF181 JFET Layout




SF51-75 JFET Layout



Low Noise JFETs								
Device No.	Input Cap. Ciss (pF) Vds=0V, Vgs=0V	Gm (mS) Vds=3V Vgs=0V	Noise, En nV /Root HZ Vds=3V, f=100kHz	Die size	Additional Information			
SF291	8.0	45	0.65	900 x 900 µm	Three terminal device for amplifiers requiring high transconductance and low noise.			
SF201	1.6	10	1.3	900 x 900 μm	Four terminal device with an integrated charge reset mechanism and feedback capacitance. Suitable for large area nuclear detectors coupled to charge sensitive amplifiers. For electron charge collection (negative biased detectors)			
SF202	1.6	10	1.3	900 x 900 µm	Four terminal device with an integrated charge reset mechanism and feedback capacitance. Suitable for large area nuclear detectors coupled to charge sensitive amplifiers. For hole charge collection (positive biased detectors)			
SF181	0.8	5	1.8	900 x 900 µm	Four terminal device with an integrated charge reset mechanism and feedback capacitance. Suitable for medium area nuclear detectors coupled to charge sensitive amplifiers. For electron charge collection (negative biased detectors)			
SF51	0.4	2.3	2.2	900 x 900 µm	Four terminal device with an integrated charge reset mechanism and feedback capacitance. Suitable for small area nuclear detectors coupled to charge sensitive amplifiers. For electron charge collection (negative biased detectors)			

Silicon Detectors PiN

Silicon Detectors Pin									
Device Active area Thicknee (sqmm)		Thickness	Capacitance	Leakage current at full Depletion	Mn Energy Resolution at -40C	Additional Information			
506103	25	500um	5.5pF	1nA typical	170eV	Large area circular silicon PiN diode suitable for X-ray, and electron detection.			
506104	13	500um	3.0pF	600pA typical	156eV	Medium area circular silicon PiN diode suitable for X-ray, and electron detection			
506101	6	500um	1.3pF	350pA typical	149eV	Small area circular silicon PiN diode suitable for X-ray, and electron detection			
501102	4.1x4.1	380um	3.2pF	600pA typical	3	Supplied in 18ld LCC package with Kapton window for use as Neutron detector.			

PPS506 PiN Diodes - Test Limits									
Parameter	Test Conditions	506101	506103	506104	506105	506106			
Diode Vf	5mA	0.3V to 1V							
Guard Ring Vf	5mA	0.3V to 1V							
Diode Leakage	Vr=200V			Max = 1nA		Max = 1nA			
Diode Leakage	Vr=225V	Max = 700pA	Max = 1.5nA		Max = 700pA				
Guard Ring Leakage	Vr=200V			Max = 1nA		Max = 1nA			
Guard Ring Leakage	Vr=225V	Max = 700pA	Max = 1.5nA		Max = 700pA				
Breakdown Voltage		>225V	>225V	>225V	>225V	>225V			
Die Size	Y	4.9 x 4.9 μm	6.4 x 6.4 µm						

For further information contact

Daniel James

Mob/Cell (+357) 9786 8765 daniel.james@dstsensor.eu

Allan James

Mob/Cell +44 7710 779697 allan.james@dstsensor.eu

Registered Address

7D Nikou Kranidioti Street, Tower 4, Suite 302, 2411 Engomi, Nicosia, Cyprus